免费试用:最火的人工智能查询工具
     最强AI人工智能聊天工具
     对话机器人解答疑难问题
星外智问直连原始API接口(GPT-4o)
➡️未登录受限条数,请登陆使用完整服务>>>➡️
请输入您要问的问题:


查下百度  查下必应

以下是单个问题的回复:

问:Given a positive integer n such that 2020n can be expressed as a product of three consecutive positive integers, what is the smallest possible value of n?
GPT答: 7i24.cn
Let the three consecutive positive integers be $n-1$, $n$, and $n+1$. Then we have $(n-1)n(n+1) = 2020n$. Simplifying, we get $(n-1)n(n+1) = 2^2 \cdot 5 \cdot 101 \cdot n$. Since $\gcd(n-1,n)=\gcd(n,n+1)=\gcd(n+1,n-1)=\gcd(2,n-1)$, one of the factors on the left-hand side must be divisible by $4$ and another factor must be divisible by $5$.

If $(n-1)$ is divisible by $4$, then either $(n-3)$ or $(n+3)$ is also divisible by $4$. However, since $\gcd(2,n\pm3)=\gcd(6,n\pm3)=\cdots=2$, none of these numbers can be equal to a multiple of any other factor. Thus, it follows that either $(n)(n+1)$ or $(n)( n -  11 )$ is a multiple of four.

If neither of them are multiples of four, then one must be a multiple of five. This means that either: 
\[ ( n -   5 ) ( n +   6 ) =    n^2+n -30     \] 
or
\[ ( n -   6 ) ( n +   5 ) =    n^2-n -30     \]
is a multiple of five. Therefore,
\[ |{ {    {      {       } } }_{ {(a)} } }\;{{ {{    {      {       } }} }}_{ {(b)} }}|=\left|\frac{n^{2} + n}{20}\right|,\;\;\; |{ {\;{{ {{    {      {       } }} }}}}_{ {(c)}} }\;{{ {{    {      {
} }}}}_{ {(d)}} }\}|=\left|\frac{n^{2}-9}{20}\right|. \]
Since at least one out two pairs ${(a,b),(c,d)}$ has an integer solution for ${m}$ such that ${m(m +   d)}/{20}=k,$ where ${k}$ is an integer,
we find that the smallest possible value for ${(a,b,c,d,k,m)}$
is ${(9,-10,-8,7,-18,-10)}.$ Thus our answer is $\boxed{010}.$
一星  二星  三星  四星  五星 

互联网非法外之地,请不要输入不良内容
 查下百度 查下必应 2024-12-31 18:16:29



chatGPT中国版--星外智问--8v6.CN
当前运行网址:ask.7i24.com
客服微信:xwgdd_com APP下载 怎么问 识别真假GPT4 使用GPT赚钱 退出登陆